Микроорганизмы в агробиотехнологии. Симбиозы (азотфиксация, микориза).

7 лекция

• Микроорганизмы играют ключевую роль в агробиотехнологии благодаря симбиотическим отношениям с растениями, таким как азотфиксация и микориза. Азотфиксирующие бактерии, например, обогащают почву доступным азотом, а микоризные грибы улучшают поглощение растением воды и питательных веществ.

Основные направления использования микроорганизмов

- 1. Биологическое удобрение (биофертилизация)
- 2. Биологическая защита растений (биотехнологические пестициды)
- 3. Биоремедиация почв:
- 4. Биостимуляция роста растений:
- 5. Силосование и кормовая биотехнология:
- 6. Генетическая инженерия в агробиотехнологии:

1. Биологическое удобрение (биофертилизация):

Азотфиксирующие бактерии (Rhizobium, Azotobacter, Azospirillum) связывают атмосферный азот и делают его доступным растениям.

Фосфатмобилизующие микроорганизмы (Bacillus megaterium, Pseudomonas fluorescens) переводят нерастворимые формы фосфора в доступные.

Калиймобилизующие бактерии (Bacillus mucilaginosus) улучшают поступление калия из минеральных соединений.

2. Биологическая защита растений (биотехнологические пестициды):

Bacillus thuringiensis — источник природного инсектицида (Bt-токсина).

Trichoderma spp. и Pseudomonas fluorescens подавляют фитопатогенные грибы и бактерии.

Beauveria bassiana и
Metarhizium anisopliae
— энтомопатогенные
грибы против
насекомых-вредителей.

3. Биоремедиация почв:

• Микроорганизмы (Pseudomonas, Mycobacterium) разрушают токсичные вещества, пестициды, нефть и тяжелые металлы в почве.

4. Биостимуляция роста растений:

Продуценты фитогормонов (индолуксусной кислоты, гиббереллинов, цитокининов) — Bacillus, Azospirillum, Streptomyces.

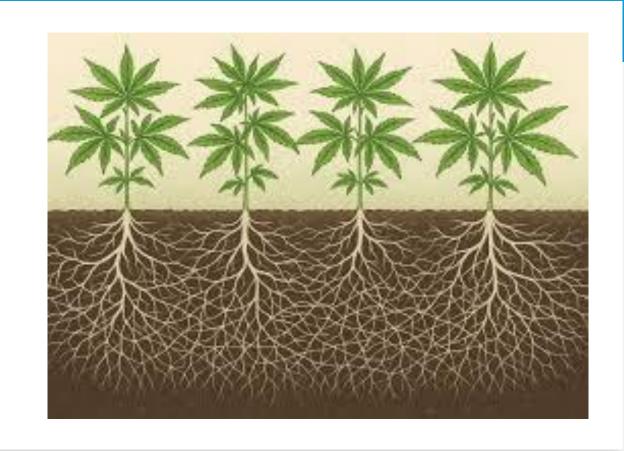
Повышают устойчивость растений к стрессам (засуха, засоление).

5. Силосование и кормовая биотехнология:

• Молочнокислые бактерии (Lactobacillus plantarum, Pediococcus) обеспечивают ферментацию кормов, улучшая их качество и сохранность.

6. Генетическая инженерия в агробиотехнологии:

Использование
Agrobacterium
tumefaciens как вектора
для переноса генов в
растения (трансгенные
культуры).


Создание микроорганизмов-продуцентов биопестицидов, витаминов и аминокислот.

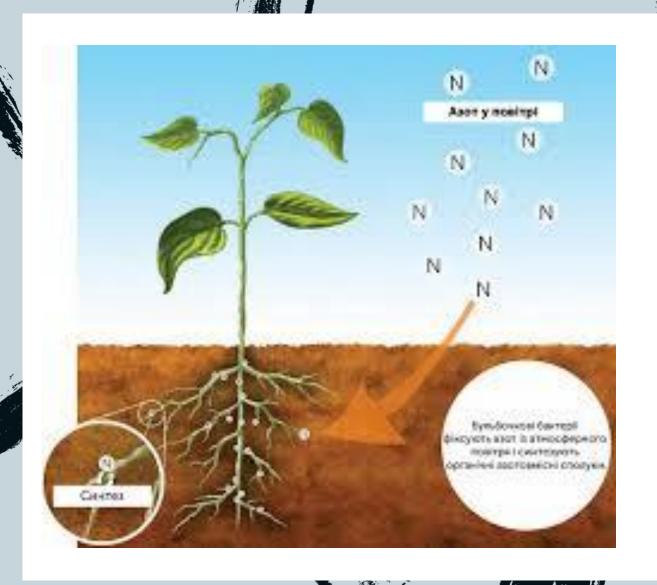
🔬 Примеры агробиотехнологических продуктов:

Продукт	Микроорганизм	Назначение Биоускоритель роста растений	
Азотобактерин	Azotobacter chroococcum		
Ризоторфин	Rhizobium leguminosarum	Для бобовых культур	
Фосфоробактерин	Bacillus megaterium	Фосфатмобилизующее удобрени	
Планриз	Pseudomonas fluorescens	Биозащита растений	
Битоксибациллин	Bacillus thuringiensis	Биопестицид против насекомых	

Значение микроорганизмов в агробиотехнологии:

- Повышают плодородие почвы без химических удобрений.
- Снижают использование пестицидов и гербицидов.
- Повышают экологическую устойчивость сельского хозяйства.
- Способствуют устойчивому развитию агросистем.

Понятие симбиоза


• Симбиоз — это форма взаимоотношений между организмами разных видов, при которой оба партнёра получают взаимную выгоду. В агробиотехнологии симбиотические взаимодействия играют ключевую роль в повышении плодородия почв и устойчивости растений.

1. Азотфиксация

- Азотфиксация это процесс преобразования атмосферного азота (N₂), недоступного растениям, в соединения, которые могут усваиваться (аммоний NH₄⁺, нитраты NO₃⁻).
 Этим занимаются азотфиксирующие микроорганизмы.
- • Типы азотфиксации:
- **Свободноживущие бактерии** живут в почве самостоятельно.
 - Примеры: Azotobacter, Clostridium, Beijerinckia.
 - Фиксируют азот без участия растений.
- Симбиотические бактерии живут в симбиозе с растениями, чаще всего бобовыми.
 - Примеры: Rhizobium, Bradyrhizobium.
 - Образуются **клубеньки** на корнях, где бактерии превращают азот в доступные формы.
- Ассоциативные бактерии живут в ризосфере (на поверхности корней).
 - Примеры: Azospirillum, Herbaspirillum.

Первый биопрепарат на основе азотфиксирующих клубеньковых бактерий — нитрагин — был произведен в Германии в 1896 г. В Советском Союзе создан и получил широкое распространение препарат ризоторфин — торфяной субстрат с питательными добавками, содержащий высокоактивный, конкурентоспособный штамм ризобий для конкретного вида бобовых растений

Биологическое значение:

- Обеспечивает растения доступным азотом.
- Уменьшает потребность в минеральных удобрениях.
- Улучшает структуру и плодородие почв.

Использование микробнорастительных взаимодействий для улучшения питания растений

• Симбиозы растений с азотфиксирующими микроорганизмами

Усвоение молекулярного азота атмосферы бактериями носит название биологической азотфиксации.

Азотфиксирующие микробно-растительные симбиозы могут быть разделены на три группы: внутриклеточные, эндофитные и ассоциативные.

К группе внутриклетоных (симбиотических) азотфиксаторов относят бактерий, развивающиеся внутри клеток в образованных на корнях, листьях или стеблях клубеньках.

Эндофитные бактерии развиваются в межклетниках, сосудах или внутренних полостях растения.

Ассоциативные бактерии локализуются на поверхности корней и надземной части растений.

Симбиозы азотфиксирующих микроорганизмов и растений (по Тихонович И.А.,

Проворов Н.А., 2009 с изм.)

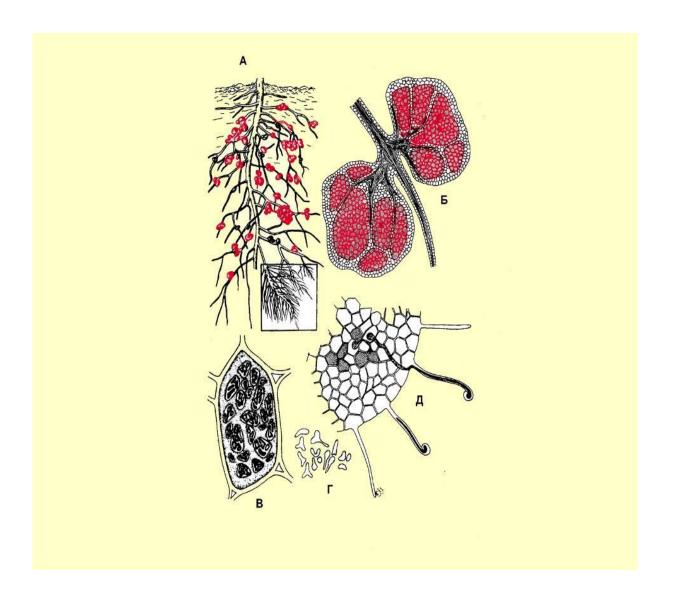
Группы симбиозов	Симбиозы с участием		
	эубактерий	цианобактерий	актиномицетов
внутриклеточные	Ризобии- бобовые	Nostoc- Gunnera	Frankia- лох, облепиха
эндофитные	Azoarcus, Acetobacter, Herbaspirillum - злаковые	Nostoc/Anabae na - Azolla; Nostoc- печеночники	Нет данных
ассоциативные	Azospirillum, Enterobacter- разные растения	Nostoc- Sphagnum	Нет данных

- Микроорганизмы, усваивающие молекулярный азот атмосферы, диазотрофы, имеют сходный биохимический механизм фиксации азота.
- Существуют две основные группы фиксирующих атмосферный азот микроорганизмов вступающие в симбиоз с высшими растениями (роды бактерий Rhizobium, Bradyrhizobium, Mezorhizobium, Sinorhizobium, Azorhizobium) и свободноживущие.
- Ко второй группе относятся ассоциативные азотфиксаторы (роды бактерий Azospirillum, Pseudomonas, Agrobacterium, Klebsiella, Bacillus, Enterobacter, Flavobacterium Arthrobacter и др.) и микроорганизмы, более приспособленные к свободному существованию в почве (роды бактерий Clostridium, Azotobacter, Beijerinckia и др.; азотфиксирующие фототрофные бактерии, цианобактерии)

Основные типы микробно-растительных симбиозов

(по Тихонович И.А., Проворов Н.А., 2009)

Роль в жизни растений	Механизмы действия	Наиболее изученные микросимбионты
Улучшение минерального питания	Фиксация молекулярного азота	Ризобии (Rhizobium, Sinorhizobium, Bradyrhizobium, Mezorhizobium, Azorhizobium), Frankia, Nostoc, Azospirillum и др.
	Мобилизация минеральных веществ из почвы	Микоризые грибы, фосфатмобилизующие бактерии
Защита от фитопатогенов	Ингибирование патогенов (синтез антибиотикив, конкуренция за питательные субстраты), активация защитных систем растений	Ризосферные и эндосимбиотические бактерии и грибы
Защита от растительноядных животных	Синтез токсинов	Эндофитные микроорганизмы: грибы-аскомицеты (сем. Clavicipitaceae), коринефомные бактерии (Clavibacter)
Адаптация к стрессам	Накопление пролина, адсорбция тяжелых металлов	Ризосферные бактерии
	Модификация развития корней (синтез фитогормонов)	Микоризные грибы, ризосферные бактерии
Регуляция развития	Образование новых органов	Ризобии , <i>Frankia, Nostoc</i>
	Стимуляция эмбриогенеза	Микоризные грибы в симбиозе с орхидными


Бобоворизобиальный симбиоз

• Симбиоз бобовых растений и клубеньковых бактерий - одна из наиболее эффективных систем биологической азотфиксации, имеющая огромное экологическое и практическое значение.

Онтогенез клубеньков

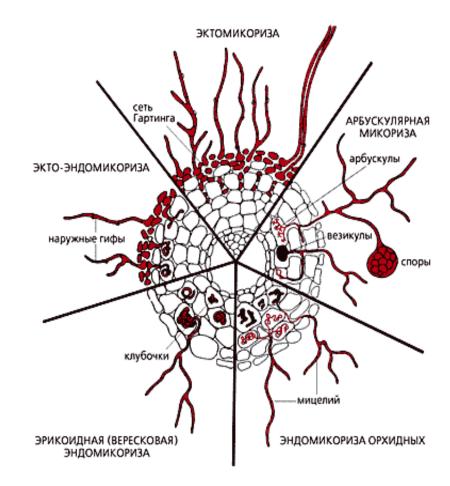
- A корень гороха с клубеньками
- Б клубеньки в разрезе
- В растительная клетка, заполненная бактериями
- Г бактероиды
- Д внедрение бак терий через корневые волоски

Видовая специфичность клубеньковых бактерий

Клубеньковые бактерии формируют симбиотические ассоциации с бобовыми растениями семейства *Leguminosae*.

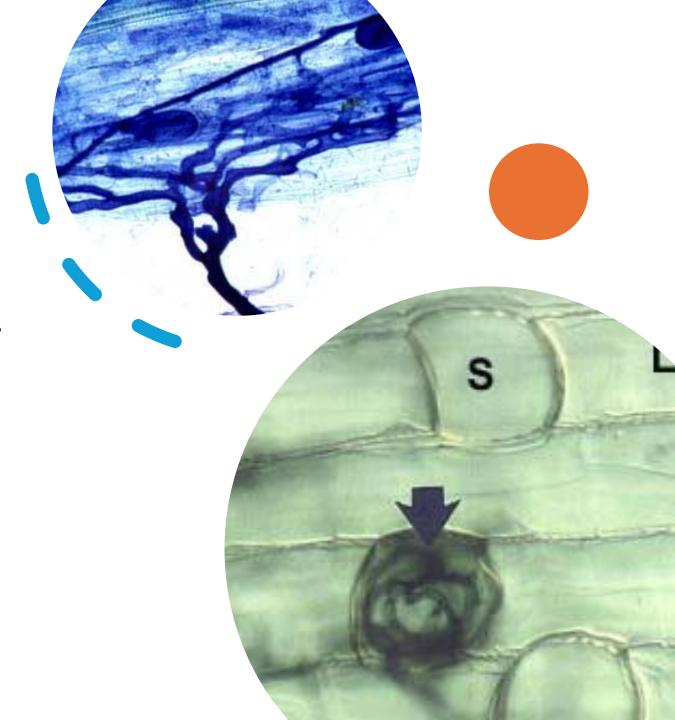
Клубеньковые бактерии характеризуются видовой специфичностью (избирательностью) по отношению к растению-хозяину. Определенный вид бактерий обычно образует клубеньки только на одном или нескольких видах бобовых растений. Так, Rhizobium leguminosarum инфицирует горох, вику, кормовые бобы и чечевицу; Rhizobium phaseoli – фасоль; Bradyrhizobium japonicum –сою; Bradyrhizobium lupini – люпин; Bradyrhizobium vigna – вигну, маш и арахис и т.д.

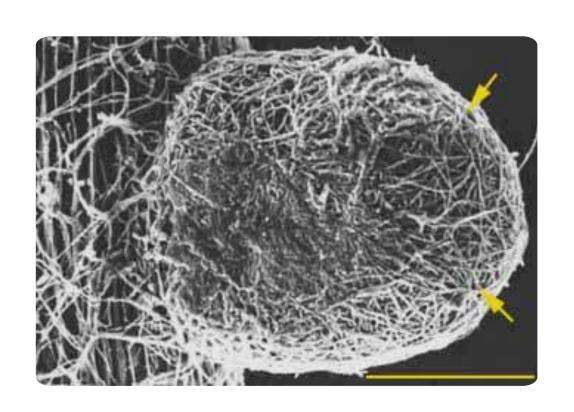
2. Микориза


• **Микориза** — это симбиоз между корнями растений и грибами.

Гифы грибов проникают в корень или окружают его, образуя единую систему поглощения воды и минеральных веществ.

Типы микоризы:


- Эктомикориза гриб оплетает корни снаружи.
 - Встречается у древесных пород (берёза, дуб, сосна).
 - Гифы формируют «грибную мантию» вокруг корня.
- Эндомикориза (арбурикулярная) гриб проникает внутрь клеток корня.
 - Встречается у травянистых растений и сельскохозяйственных культур.
 - Примеры грибов: Glomus, Gigaspora.


Экто-эндотрофная микориза

Эндотрофная микориза

- Мицелий гриба распространяется преимущественно внутри тканей корня и относительно мало выходит наружу.
- При этом часто образуются клубки гиф везикулы и внутриклеточные разветвления в виде гаусторий арбускулы.
- Такой тип микоризы называют арбускулярной.
- Она образуется микроскопическими грибами из отделов Zygomycota, Ascomycota или анаморфными грибами.
- Эндотрофная микориза встречается у многих травянистых растений.

Эктотрофная микориза

- На корнях формируется чехол из гиф. Собственных корневых волосков корень при этом не образует.
- Такая микориза характерна для древесных растений и редко встречается у травянистых.

Экто-эндотрофная микориза

- При таком типе микоризы гифы гриба густо оплетают корень снаружи и в тоже время проникают в коровую паренхиму.
- Мицелий идет по межклетникам, отчасти внутриклеточно, образуя в клетках везикулы и арбускулы.
- Наружные свободные гифы гриба широко расходятся в почве от корня, заменяя ему корневые волоски.
- Такая микориза характерна для древесных пород, Ее образуют микромицеты из отдела Basidiomycota (это преимущественно шляпочные грибы)

Значение микоризы:

Повышает поглощение воды и минеральных веществ (особенно фосфора).

Защищает растения от патогенов.

Улучшает рост растений в стрессовых условиях (засуха, бедные почвы).

Способствует устойчивости растений к загрязнению тяжелыми металлами.

Использование **азотфиксирующих бактерий** и **микоризных грибов** позволяет снизить

применение химических удобрений.

Создаются биотехнологические препараты — инокулянты для обработки семян и почв:

Ризоторфин (c Rhizobium)

Азотобактерин

МикоВитал и др.

Таблица 1. Биопрепараты на основе азотфиксирующих микроорганизмов, применяемые в растениеводстве [6]

Название препарата	Препаративная форма	Применение	
Азотобактерин	Жидкая, лигниновая	Под овощные и кормовые культуры, сахарную свеклу	
Азогран	Гранулированный азотобактерин	Улучшает азотное питание, защищает растения от фитопатогенов, повышает урожайность на $10-25\%$	
Ризобофит (Ризоторфин)	Жидкая, гельная, вермикулитная, перлитная	Обеспечивает бобовые растения биологическим азотом на 30% и более, повышает урожайность на 10-30%	
Диазофит (Ризоагрин) Ризоэнтерин Диазобактерин	Жидкая, гельная, вермикулитная, торфяная	Оптимизируют азотное питание, угнетают развитие фитопатогенных грибов. Повышают урожайность озимой и яровой пшеницы— на 3-7 ц/га, ячменя— на 4-5 ц/га	
Флавобактерин	Гельная, торфяная	Под озимую пшеницу, рожь, ячмень, злаковые травы. Оптимизирует азотное питание и повышает урожайность	
Полимиксобактерин	Жидкая	Улучшает фосфорное и азотное питание сахарной свеклы и других культур, продуцирует стимуляторы роста и антибиотики, создан на основе бактерий рода $Bacillus$, повышает урожайность на $6-14\%$	
Биоторфяное удобре- ние комплексного действия	Торфяная	Бинарный препарат на основе азотобактера и фосфатмобилизирующих бактерий, применяемый под овощные, ягодные и цветочные культуры. Улучшает азотное и фосфорное питание, защищает от фитопатогенов, повышает урожайность на $20-25\%$	